Silicon Nanoparticles in Targeted Cancer Therapy

  • Zainab N. Mutashara Thi-Qar Education Directorate ,Ministry of Education – Iraq, Thi-Qar , Iraq
  • Sura N. Taraadb Diwaniyah Education Directorate, Ministry of Education – Iraq, Diwaniyah, Iraq
Keywords: Silicon Nanoparticles, Targeted Cancer Therapy

Abstract

Silicon nanoparticles represent a promising advancement in cancer treatment, offering precise means to target cancer cells while minimizing side effects on healthy cells. Their applications include targeted drug delivery, enhanced immunotherapy, phototherapy, and thermal therapy techniques, thereby increasing treatment efficacy and reducing tumor resistance. Despite these benefits, long-term studies are necessary to ensure the safety and effectiveness of these technologies, emphasizing the need for future innovations to overcome challenges and expand their use in medicine.

Downloads

Download data is not yet available.

References

1. Kulkarni, S. K. (2015). Nanotechnology: Principles and Practices. Springer.
2. Hornyak, G. L., Tibbals, H. F., Dutta, J., & Moore, J. J. (2008). Introduction to Nanoscience and Nanotechnology. CRC Press.
3. Cao, G., & Wang, Y. (2011). Nanostructures and Nanomaterials: Synthesis, Properties, and Applications. World Scientific Publishing.
4. Chou, L. Y. T., Ming, K., & Chan, W. C. W. (2011). Strategies for the intracellular delivery of nanoparticles. Chemical Society Reviews, 40(1), 233-245. https://doi.org/10.1039.
5. Zhang, X., Yin, H., Xu, Z., & Liu, Z. (2013). Recent progress in sensors based on nanomaterials. Sensors, 13(7), 9381-9403. https://doi.org/10.3390/s130709381.
6. Huo, S., & Jin, S. (2020). Nanoparticle interactions and toxicity in biological systems. Nature Nanotechnology, 15(3), 153-167. https://doi.org/10.1038/s41565-020-0673-7.
7. Lee, J. H. (2018). Applications of Nanotechnology in Medicine: Drug Delivery and Cancer Therapy (Doctoral dissertation, University of California, Berkeley).
8. Kumar, C. S. S. R. (2006). Nanostructured Materials: Processing, Properties and Applications. William Andrew Publishing.
9. Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold nanoparticles in diagnostics and therapeutics for human cancer. International Journal of Molecular Sciences, 19(7), 1979. https://doi.org/10.3390/ijms19071979.
10. Mitragotri, S., & Lahann, J. (2009). Physical approaches to biomaterial design. Nature Materials, 8(1), 15-23. https://doi.org/10.1038/nmat2344.
11. Gupta, A. (2014). Nanoparticles for Drug Delivery: Properties and Applications (Doctoral dissertation, Stanford University).
12. Wang, Y. (2013). Synthesis and Application of Magnetic Nanoparticles in Medicine (Doctoral dissertation, University of California, Los Angeles).
13. Rai, M., Duran, N., & Ahamed, M. (2011). Metal Nanoparticles in Microbiology: Fundamentals and Applications. Springer.
14. Iravani, S. (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry, 13(10), 2638-2650. https://doi.org/10.1039/c1gc15386b.
15. Mourdikoudis, S., & Liz-Marzán, L. M. (2013). Formation of stable colloidal solutions of metal nanoparticles: Critical steps and tips on nanoparticle synthesis. Chemistry of Materials, 25(9), 1465-1476.
16. Gupta, A. (2014). Nanoparticles for Drug Delivery: Properties and Applications (Doctoral dissertation, Stanford University).
17. Wang, Y. (2013). Synthesis and Application of Magnetic Nanoparticles in Medicine (Doctoral dissertation, University of California, Los Angeles).
18. Torchilin, V. P. (2006). Nanoparticulates as Drug Carriers. Imperial College Press.
19. Peer, D., et al. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751-760.
20. Ferrari, M. (2005). Cancer nanotechnology: Opportunities and challenges. Nature Reviews Cancer, 5(3), 161-171. https://doi.org/10.1038/nrc1566.
21. Grobmyer, S. R., & Moudgil, B. M. (2010). Cancer Nanotechnology: Methods and Protocols. Humana Press.
22. Park, J. H., Gu, L., Von Maltzahn, G., Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2009). Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials, 8(4), 331–336. https://doi.org/10.1038/nmat2398.
23. He, Q., & Shi, J. (2011). Mesoporous silica nanoparticle-based nano drug delivery systems: Synthesis, controlled drug release and delivery, pharmacokinetics, and biodistribution. Journal of Materials Chemistry, 21(16), 5845-5855. https://doi.org/10.1039/C0JM03851A.
24. Croissant, J. G., Fatieiev, Y., & Khashab, N. M. (2017). Degradability and clearance of silicon, organosilica, and silica-based nanomaterials. Advanced Materials, 29(9), 1604634. https://doi.org/10.1002/adma.201604634.
25. Kumar, C. S. (2007). Nanoparticles for Biomedical Applications. Wiley-VCH.
26. Slowing, I. I., Trewyn, B. G., & Lin, V. S. Y. (2007). Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. Journal of the American Chemical Society, 129(28), 8845–8849. https://doi.org/10.1021/ja071978n.
Published
2025-07-07
How to Cite
Zainab N. Mutashara, & Sura N. Taraadb. (2025). Silicon Nanoparticles in Targeted Cancer Therapy. Central Asian Journal of Theoretical and Applied Science, 6(3), 472-477. https://doi.org/10.51699/cajotas.v6i3.1583
Section
Articles