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Chapter One/Methodological framework
First: Research problem:

The concept of fuzzy set was firstly introduced by L.Zadeh in 1965[ 19 ] as extension of
the Classical notion of set. After three years C.L.Chang in 1968 [ 3 ], axiomatized a
collection T Of fuzzy subset of non-empty set X .Atanassov introduced the notion of
intuitionistic fuzzy sets 1986 .T.R,Hamlentt| 6 ] investigated further properties of ideal
topological space and proved some results about them .The notion of intuitionistic fuzzy
ideal which is consideredas a generalization of fuzzy ideals introduced and studied by
A.A.Salman and S.A.Alblowi in 2012 [7 ]

And in 1997 D.Coker [4 ] gave the basic definition of intuitionistic fuzzy topological spaces
.Continuing the work done in the [ 13], [14 ], [15 ], [15], [16], [17] ,we define the notion
of Intuitionistic fuzzy almost 1 generalized semi closed mappings and intuitionistic fuzzy
almost mgeneralized semi open mappings .We discuss characterization of intuitionistic
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fuzzy ideal almost 7 generalized semi closed mappings and open mappings .We also
established their properties and relationship with other classes of early defined forms of
intuitionistic fuzzy ideal closed

mappings .

Preliminaries
Definition 2.1[1] Let X be a non-empty set .An intuitionistic fuzzy set (IFS in short) A is a subset
Of X characterized by membership function u,: X = [0,1] and a non- membership function
v,: X = [0,1], that they associate with each point x € X it is membership grade p4(x) and its
NOn-membership grade v, (x) such that 0 < p,(x) +v,(x) < 1, thatis
A={<xpus(x),vy(x), x €X }.
Definition 2.2 [1] Let A and B be IFSs of from A = {< x, uy(x) , v4(x) >, x € X }and
B ={<x,ug(x),vg(x) >, x € X }then
DA S BIf and only if uy(x) < pg(x) and ,v,(x) = vg(x)forall x € X.
2)A=Bif and onlyif A< Band B C A.
A = {< x,v,(X), us(X) >\x € X}.
HANB ={<x,us(x) N pu(x),v(x) N vg(x) >/ x € X}
5))AUB ={<x,ps(x) U pa(x),v4(x) U vp(x) >/ x € X}.
Definition 2.3[3] An intuitionistic fuzzy topology(IFT in short) on X is a family T of IFSs in X
Satisfying the following axioms :
1)0.,1_ €.
2)M; N M, € tfor any M, M, € 1.

3)UM; € tfor any family {M;/i € J}.

the pair (x,7)is called an intuitionistic fuzzy topoplogical space(IFTS in short).
Definition2.4[3]Let(X,T)be an IFTS and A =< x, 4, v4 > be an IFS in X Then the
intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by
int(A) =U{G/Gisan IFOS in X and G S A},
cl(A) =n{K/KisanIFCSin X and A € K}.
Definition2.5[10] A subset of A of a space (X, 1) is called :
1) reguler open if A = int(cl(A)).

2) mopen if A is the union of reguler open sets .
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Defuiniton2.6[10] An [FS A =< x, 4, v, > in an IFTS (X, 1)is said ti be an
1) intuitonistic fuzzy semi open set (IFSOS in short)if A < cl(int (4)),
2) intuitionistic fuzzy a — open set (if €0S in short)if A < int(cl(int(4)),
3) intuitionistic fuzzy reguler open set (IFROS in short )if A = int(cl(A)),
4)intuitionistic fuzzy pre open set (IFPOSon short )if A € int(cl(4)),

5)intuitionistic fuzzy semi — pre open set(IFSPOS)if there exists B
€ IFPO(X)such that

B < AccCl(B).
Definition 2.7[10] An IFS A =< x, uy, v, > inan IFTS (X, 1)is said ti be an
1) intuitonistic fuzzy semi closed set (IFScS in short)if int(cl (A)) C A,
2) intuitionistic fuzzy a — closed set (ifacS in short)if int(cl(int(A)) C A,
3) intuitionistic fuzzy reguler closed set (IFRcS in short )if A = cl(int(A)),
4)intuitionistic fuzzy pre open set (IFPOSon short )if cl(int(A)) C A,
Defintion 2.8[10] An ifs A in an IFTS(X, 1)is said to be intuitionistic fuzzy m generalized

semi closed set (IFnGSCS in short )if scl (A) € U whenever A
CUand U isan IFn0S in

(X,7).An IFS A is said to be an intuitionistic fuzzy w generalized semi open set (IFtGSOS

in short) in X if the complement A€ is an IFnGSCS in X .

Definition2.11[ 7 ] Let f be a mapping from an IFTS (X,T) into an IFTS (Y,c).Then f is said

to be intuitionistic fuzzy continuous (IFcontinuous )if f~*(B)
€EIFO(X)for everyB€Ea.

Defintion 2.12 [ 12 |Let f be a mapping from an IFTS (X, t)into an IFTS (Y,0).Then f is said to
be an intuitionistic fuzzy generalized continuous (IFG continuous )if f~1(B)elFGCS(X) for
every IFCSBinY .
Definition 2 .13 [ 14 |Letf be a mapping from an LFTS (X, 1) into an IFTS(Y,0).Then f is
said tobe an intuitionistic fuzzy almost w generalized semi continuous mappings

( IFATGA

continuous) if f~Y(B) e IFGCS(X)for every IFFCS BinY.

Defintion 2.14 [15] Let f be a mapping from an IFTS(X, t)into an IFTS (Y,0).Then f is said

to be an intuitionistic fuzzy a generalized contuiuous mappings(IFaG continuous if f~1(B)
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elFTaGCS(X) for every IFRCSB inY .
Defintion 2.15 [15] Let f be a mapping from an IFTS(X, t)into an IFTS (Y,0).Then f is said
to be an intuitionistic fuzzy a generalized semi closed mappings(IFGSCM) if f~1(B)
€ IFGCS(X) for every IFRCSBinY .
Defintion 2.16 Let f be a mapping from an IFTS(X, t)into an IFTS (Y,0d).Then f is said
to be an intuitionistic fuzzy almost closed mappings(IFACM) if f~Y(B) e IFC(Y) for
every IFRCS Bin X .
Defintion 2.17 Let f be a mapping from an IFTS(X, t)into an IFTS (Y,0).Then f is said
to be an intuitionistic fuzzy almost a generalized closed mappings(IFAaGCM)
if f~Y(B) elFaGC(Y) for every IFRCSB inY .

Defintion 2.18 [5] The IFS c(a, B)
= (X, Cq, ¢1-p) where ae (0,1], 8 €[0,)and a + B < 1is

called an intuitionistic fuzzy point (IFP)in X.

Note that an IFPc(a, B) is said to belong to an IFS A
= (X, Uu, ) of X denoted by c(a,B)

edifa<pgand f =v,.

Defintion 2.18 [5] Let c(a,B)be an IFP of an IFTS (X,t).An IFS A of X is called an
intuitionistic fuzzy neighborhood (IFN)ofc(a,B) if there exists an IFOS B in X such that
c(a, ) EBCA.
Defintion 2.19 [7] An IFS A is said to be an intuitionistic fuzzy dense (IFS for short)
in another IFS B in an IFTS(X,1),if cl(A) = B.
Defintion 2.20 [11] An IFTS (X, )is said to be an intuitionistic fuzzy nTy\, (IFTy\, in
short) space if every IFnGSCS in X isan IFCSIN X .
Defintion 2.21 [11] An IFTS (X, 7)is said to be an intuitionistic fuzzy T\, (IFngTy, in
short) space if every IFnGSCS in X is an IFGCS inX .
Result 2.22.[9] (1)every IFnOS is an IFOS in (X, 1).
(2)every IFnCS is an IFCS in (X, T).

Dfinition 2.23 [12] A non empty collection of fuzzy set I of set X satisfying the condition
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1)if A€l and B < A,then B € I (heredity),

2)if A €land BElthenAVB
€ I( finite additivity)is called a fuzzy ideal on X.

The triplex (X,1,1) denotes a fuzzy ideal topological space with a fuzz ideal I and fuzzy
topology t.
3 — Intuotonostic Fuzzy Ideal almost w Generalized Semi Open Mappings in
Gradation Topologicals Space .
In this section we introduse intuitionistic fuzzy ideal almost tgeneralized semi open
mappings , intuitionistic fuzzy ideal almost mgeneralized semi closed mappings and
studied some of its properties .

Defintion 3.1 A mapping F: X
— Y is called an intuitionistic fuzzy ideal almost

generalized semiopen mappings (IFIAnGSOM for short )if f(A)is an IFInGSOS inY for

each IFIROSAin X .

Definition 3.2 A mapping f: (X,t,1I)
- (Y,0,1D)is called an intuitionistic fuzzy ideal

almost mgeneralized semi closed mappings (IFIATGSCM for short )if f(B)is an IFInGSCS in
(Y,o,)for each IFIRCS B in( X,t,I) .

Defintion 3.3 Let X = {a, b},Y = {u,viand G; =< x,(0.2,,0,2;),(0.6,,0.7;)
>, Gz =< y,

(0.4,,0,2,),(0.6,,0.7,) >.Then,t={0.,G,,1.}and ¢
={0.,G,,1 .}areIFITsonX andY

respectively . Define a mapping f:(X,t,1) » (Y,0,1) by f(a) = uand f(b)
=v.Then fis

an IFIATGSCM .
Theorem 3.4 (1)Every IFICM is an IFIATGACM but not conversely .
(2)Every IFIaGCM is an IFIATGSCM but not conversely .
(3)Every IFICM is an IFIATGSCM but not conversely .
(4)Every IFIAaGCM is an IFIATGSCM but not conversely .

proof: (1)Assume thatf: (X,t,1)
- (Y,0,)isan IFICM.Let A be an IFIFCS in X.This implie

sAis an IFICS in X.Since f is an IFICM, f (A)is an IFICS inY . Every IFICS is an IFInGSCS inY

Hence f is an IFIAnGSCM .
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proof:(2) Let f: (X,7,1)
- (Y,0,1) isan IFIaGCM. Let A is an IFIRCS in X.This implies A is

an IFICS inX .Then by hypothesis f(A)is an IFIaGCS inY .Since every IFIaGCS is an

and every IFIGSCS is an IFInGSCS, f(A)is an IFItGSCS inY .Hence f is an IFIAnGSCM .

proof:(3) Let f: (X,t,1)
- (Y,0,1) isan IFIACM. Let A be an IFIRCS in X.Since f is IFIACM

f(A)isan IFICS inY .Since every IFICS is an IFInGSCS, f(A)is an IFItGSCS inY . Hence
fisan IFIATGSCM .

proof:(4) Let f: (X,1,1)
- (Y,0,1) isan IFIAaGCM. Let A be an IFIRCS in X . Since f is

IFIACM, Then by hypothesis f(A)is an IFIaGCS inY .Since every IFIGCS is an IFIGSCS
and every IFIGSCS is an IFInGCS , f(A)is an IFInGSCS inY . Hence f is an IFIATGSCM.

Example(1) Let X = {a,b},Y = {u, v} and G, = {x,(0.4,,0.2,),(0.5,,0.4;,)}, G,

{y,(0.3,,0.2,),(0.6,,0.7,)} .Thent ={0.,G;,1.}and ¢
={0.,G,,1_.} are IFITs on X and

Y.Define a mapping f: (X,t,I) » (Y,0,1) by f(a) = uand f(b)
=v.Then, f is an IFIAnGS

CM .But f is not an IFICM since G{
= {x,(0,0.5,,0.4;,),(0.4,,0.2;,)},is an IFICS in X but f

(G£){y,(0,0.5,,0.4,),(0.4,,0.2,)}isnot an IFICS in Y .

Example(2) Let X = {a,b},Y = {u, v} and G, = {x,(0.3,,0.4,),(0.4,,0.5,)}, G,

{y,(0.7,,0.6,),(0.3,,0.4,)} .Thent ={0_.,G,1 .} and o
={0.,G,,1_} are IFITs on X and

Y.Define a mapping f: (X,t,1) - (Y,0,1) by f(a) = uand f(b)
=v.Then, f is an IFIAnGS

CM .But f is not an IFIaGCM since G5
={x,(0.4,,0.5,),(0.3,,0.4,)}, isan IFICS in X but f

(6$) =1{y,(04,,0.2,),(0.3,,0.4,)} is not an IFIaGCS in Y .
Example(3) In example (1), f is an IFIATGSCM but f is not an IFIAaGCM since G{ =

{x,(0.44,0.55),(0.34,0.4,)},is an IFIRCS in X but f(G{)
= {y, (0.5,,0.4,),(0.4,,0.2,)} is not

an IFICS inY .

Example(4) In example (2), f is an IFIAnGSCM . But f not an IFIASGCM since G{ =
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{x,(0.4,,0.5;),(0.3,,0.4;)} is an IFIRCS in Y but f(G{)
={y,(0.4,,0.2,),(0.3,,0.4,)} is not

an IFIaGCS inY .

Theorem 3.5 A bijective mapping f: X
— Y is an IFIAnGS closed mapping if and only if

the imge of each IFIROS in X is an IFInGSOS in'Y.
Proof Necessity: Let A be an IFIROS in x.This implies A° is IFIRCS in X . Since fis an

IFIATGS closed mapping , f( A°) is an IFInGSCS inY . Sincs f( A°)
= (f(A)’, f(Ais an

IFITGSOS inY.

Sufficiency
: Let Abe an IFIFCS in X .This implies A° is an IFIROS in X . By hypothesis

,f(A®) is an IFIzGSOS inY .Sincef ( A°)
= (f(A))¢ f(A)is an IFITGSCS inY . Hence fis an

IFIATGS closed mapping .

Theprem 3.6 Let f:(X,1,1)
- (Y,0,1) be an IFIATGS closed mapping .Then f is an IFIA

closed mapping if Y is an IFIT;\, space .
Proof : Let Abe an IFIRCS in X .Then f(A)is an IFItGSCS inY , by hypothesis.Since Y is
an IFITy\, space, f (A)is an IFICS inY . Hencs fis an IFIA closed mapping .

Theprem 3.7 Let f: X
— Y be a bijective mapping . Then the following are equivalent.

1)f is an IFIARGSOM
2)f isan IFIAnTGSCM.
proof : Straightforward .

Theorem 3.8 Let : X
— Y be mapping where Y is an IFInTy\, space .Then the following

are equivalent:

(1)fis an IFIATGSCM

(2)scl(f(A)) < f(cl(A))forevery IFISPOS Ain X
(3)scl(f(A)) < f(cl(A))forevery IFISOS Ain X .

proof (1)
= (2)Let A be an IFISPOS in X .Then cl (A)is an IFIRCS in X . By hypothesis,

f(cl(A))is an IFInGSCS inY .Since Y is an IFInTy\, space . This implies scl(f(A)) =
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f(cl(A)).Now scl(f(A)) C scl (f(cl(A))) = f(cl(A)).Thus scl(f(A))
c f(cl(A)).

(2) = (3)Sinceevery IFISOS is an IFISPOS, the proof directly follows.

(3) > (1)LetA be an IFIRCS in X.Then A
= cl(int(A)).Therefore A is an IFISOS in X . By

hypothesis, scl(f(A)) c f(cl(A)) = f(4)
c scl(f(A)).Hence f(A)is an IFISCS and

hence is an IFItGSCS inY .Thus f is an IFIAnGSCM.

Theorem 3.9 Let : X
- Y be mapping where Y is an IFItTy\, space .Then the following

are equivalent:

()fis an IFIARGSCM
(2)f(A) c sint < <f (int(cl(A)))) forevery IFIPOS Ain X .

proof (1) = (2)Let Abe an IFIPOS in X .Then A
c int(cl (A)).Since int(cl(A))is an

IFIROS in X , by hypothesis,f(int(cl(A))is an IFInGSOS inY .Since Y is an IFInTy\,space,

f (int(cl (A))) is an IFISOS in Y .Therefore f(4)  f (int(cl(A)))

C sint <f (int(cl(A))))

(2
= (1)Let Abe an IFIROS in X .Then A is an IFIPOS in X . By hypothesis , f(A)
C sint(f

(cl(A)))) = sint (f(4))
C f(A).This implies f(A) is an IFISOS in Y and hence is an IFInG

SOS inY .Thereforef is an IFIARGSCM, by theorem 3.6 .

Theorem 3.10 Let : (X,7,1)
- (Y,0,1)be mapping froman IFITS X into an IFITS Y.

Then the following conditions are equivalent if Y is an IFInT;\, space.
(1)fis an IFIARGSCM

(2)f is an IFIARGSOM
(3)f(int(A)) Cint (cl (int(f(A)))) forevery IFIROS Ain X .

proof (1) = (2)It is obviously true.

(2) = (3)LetA be any IFIROS in X .This implies A is an IFIOS in X.Then int(A)is an IFIOS
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in X .Then f(int(A))is an IFInGSOS in Y. Since is an IFInTl\Zspace,f(int(A))is an IFI0S in
Y .Therefore f(int(A)) = int(f(int(4)) € int (cl (int(f(A)))) .(3)
= (4)Let A be an

IFIRCS in X.Then itscomplement A°is an IFIROS in X. By hypothesis f (int(A°)) < int(cl

(int(f(A%))))). This implies f(A°)
c int(cl(int(f(A°)))). Hence f(A%)is an IFIa0S in'Y.

Sinc every IFIa0S is an IFInGSOS, f (A°)is an IFInGSOS in Y.Thereforef (A)is an IFInGSCS
inY.Hence f is an IFIARGSCM .

Theorem3.11 Let : (X,7,1)
- (Y,0,)be mapping froman IFITS X into an IFITS Y.

Then the following conditions are equivalent if Y is an IFInTy,, space.
(fis an IFIATGSCM
(2)sc)f(A)) < f(cl(A)) for every IFISCS in X.
proof (1) = (2)Assume that A is an IFIRCS in X. By Definition, int(cl(A)) c A
This implies cl(A)is an IFIRCS in X. By hypothesis f(cl(A)) isan IFInGSCS inY and

hence is an IFICS inY,since Y is an IFInTy\,space. This implies scl(f(cl(A))
= f(cl(4))

= f(cl(A)). Now scl(f(A)) € scl(f(cl(A))
= f(cl(A)).Since cl(A)is an IFIROS, int(cl

(cl(A))) = cl(A).This implies scl (f(A)) = f(int (cl(cl(A))))
c f(Auint(cl(A)))) = f(scl

(A).Hence scl (f(A)) € f(scl(A)).(2) = (1)Let A be an IFIRCS in X.Then A
= cl(int(4)).

Therefore A is an IFISCS in X . By hypothesis, scl(f(A)) € f(scl(A))
< f(cl(@) = f(4)

c scl(f(A)). That is scl(f(A))
= f(A).Hencef (A)is an IFInCS and hence is an IFInGSCS in

Y.Thus f is an IFIAnGSCM.

Theorem 3.12 Let : (X,1,1)
- (Y,0,)be mapping froman IFITS X into an IFITS Y.

Then the following conditions are equivalent if Y is an IFInT;\, space.

(1)fis an IFIARGSCM

(2)f(A) < wint (f(scl(A)))for every IFIPOS Ain X.
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proof:(1) = (2) Let A be an IFIPOS in X.Then A
c int(cl(A)).Since int(cl(A))is an IFIROS

in X . by hypothesis, f (int(cl(A))is an IFInGSOS inY.Since Y is an IFIT[T1/2 space, f (int(cl(A))

is an IFItOS inY.Therefore f(A) € f (int(cl(A))) c m int(f (int(cl(A)))

C wint

(f (AU int(ct(4))) = mint (f (scl((4))) . That is f(4) € mint (f(scl(4))). (2)
= (1) Let A

be an IFIROS in X.Then A is an IFIPOS in X . By hypothesis, f (A)wint (f(scl(A))) .This implies
F(A) € mint (f (A U int(cl(A)))) < mint(f(A U A))mint(f (4))
C f(A).Therefore f(A)is an
IFIT0S inY and hence an IFInGOS inY.Thus f is an IFIAnGS closed mapping .

Theorem 3.13 Let : (X,7,1)
- (Y,0,)be a mapping from an IFITS X into an IFITS Y.

Then the following conditions are equivalent if Y is an IFInTy,, space.
()fis an IFIARGSCM
(2)If Bis an IFIROS in X then f(B)is an IFItGSOS inY
(3)f(B) < int(cl(f(B))for every IFIROS in X .
Proof (1) = (2)obviously.
(2) > (3)Let B be any IFIROS in X.Then by hypothesis f(B)is an IFItGSOS inY.Since X is an

IFInT, , space, f(B)is an IFIOS inY (Result 2.23 ).Therefore f(B)
= int(f(B)) € int

(cl(r®)). 3
= (1)LetB be an IFIRCS in X.Then its complement Bis an IFIROS in X.

By hypothesis f( B°)
Cint (cl(f(Bc))) .Hence f(B°) is an IFIn0S inY.Since every IFIt0S

is an IFITGSOS, f (B®)is an IFItGSOS inY.Therefore f(B)is an IFInGSCS inY.Hence f is
an IFIATGSCM.

Theorem 3.13 Let : (X,1,1)
- (Y,0,)be a mapping from an IFITS X into an IFITS Y.

Then the following conditions are equivalent if Y is an IFInT;\, space.

()fis an IFIARGSCM .

(2)int (cl(f(A))) C f(A)for every IFIRCS AinX .
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Proof (1)
= (2)Let A be an IFIRCS in X . BY hypothesis, f (A)is an IFITGSCS inY.Since Y

is an IFInTy 5, f(A)is an IFICS in Y (Result 2.23).Therefore cl(f(A))
= f(A).Now int

(cl(FA))) € cl(f(A) € f(A)-(2)
= (1) Let A be an IFIRCS in X. By hypothesis int(cl(f(A)))

C f(A).This implies f(A)is an IFInCS in'Y and hence f(A)is an IFInGSCS inY .Therefore
fisan IFIARGSCM.

Theorem 3.14 Let f: (X,7,1)
- (y,0,1) be an IFIA closed mapping and g: (y,o,1) -

(Z,6,1)isIFIATGS closed mapping, then gof: (X,t,1)
- (Z,6,Disan IFIA closed mapping

Jif Zis an IFInT, s;space.
proof : Let Abe an IFIRCS in X.Then f(A)is an IFICS inY.Since g is an IFInGSclosed
mapping ,g(f(A))is an IFInGSCS in Z.Therefore g(f(A)) is an IFICS in Z, by hypothesis.
Hence gof is an IFIA closed mapping.

Theorem 3.15 Let f: (X, t,1)
- (y,0,1) be an IFIA closed mapping and g: (y,o,1) - (Z,{,I)

isIFITGS closed mapping, then gof: (X,t,1)
- (Z,¢,Dis an IFIATGS closed mapping .

proof : Let A be an IFIRCS in X.Then f(A)is an IFICS inY., by hypothesis.Since g is an
IFItGSclosedmapping ,g(f(A))is an IFInGSCS in Z.Therefore g(f(A)) is an IFITGSCS
inZ.Hence gof is an IFIAnGS closed mapping.

Theorem3.16 If f: (X,1,1)
- (Y,0,1) is an IFIAnGS closed mapping and Y is an IFIngT, ,

space, then f(A) is an IFIGCS inY for every IFIRCSAin X .

Proof:Let f: (X,t,1)
- (Y,0,1) be a mapping and let A be an IFIRCS in X.Then by

hypothesis f(A) is an IFITGSCS inY.Since Y is an IFInT, ;, space, f(A)is an IFIGCS inY.

Theorem 3.17 Let c(a, ) be an IFIP in X. A mapping f: X
- Yisan IFlanGSOM if for

every IFI0S A in X with f~(c(a, B))
€ A, there exists an IFIOS B inY with c(a, 8) € B such

F(A)is IFID in B .
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Prooof:Let A be an IFIROS in X. Then A is an IFIOS in X.Let f~*(c(a, B))
€ A, then there

exists an IFIOS B in'Y such that c(a,B) € B and cl(f(A))
= B.Since B is an IFI0S, cl (f (A))

= Bisalso an IFIOS inY .Therefore int (cl(f(A)) = cl(f(A)).Now f(A)
c cl(f(A)) = int

(ct(f(@)) < ci(int(int(cl(F(4))))
=cl (int (cl(F(A)))).Thus f is an IFIATGSOM.

Theorem 3.18 Let f: X
— Y be a bijective mapping . Then the following are equivalent .

(1)f is IFIATGSOM

(2) fisan IFIAnGSCM

(3) fYis an IFIARGS continuous mapping
proof (1) & (2)isobvious from the theorem 3.7 .

(2) © (3)Let A
C X be an IFIRCS.Then by hypothesis , f(A)is an IFInGSCS inY .That is

(fH71(A)is an IFInGSCS inY .This implies f~! is an IFIAnGS continuous mapping .

(3) = (2)LetA
C X be an IFIRCS.Then by hypothesis (f "1)"*(A)is an IFInGSCS in Y .

That is f(A)is an IFInGSCS inY.Hence f is an IFIATGSCM .

Theorem 3.19 Let f: X — Y be a mapping.If f(sint (B))
c sint(f(B))for every IFIS B in X,

then f is an IFIATGSIM.

proof : Let B € X be an IFIROS .By hypothesis,f(sint(B))
c sint(f(B)).since B is an

IFIROS ,it is an IFISPOS in X.Therefore sint (B) = B.Hence f(B)
= f(sint(B)) C sint

(f(B)) C f(B).This implies f(B)is an IFISOS and hence an IFItGSOS inY.Thus f is an
IFIATGSOM.

Theorem3.20 Let f:X - Y be a mapping. If scl(f(B))
c f(scl(B))forevery IFIS B in X,

then f is an IFIATGSCM.

Proof:Let B € X be an IFIRCS. By hypothesis, Scl(f(B))
c f(scl(B)).Since B is an IFIRCS,
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it is an IFISCS in X.Therefore scl(B) = B.Hence f(B) = f(scl(B))
) scl(f(B)) 2 f(B).

This implies f(B)is an IFISCS and hence an IFItGSCS inY.Thus f is an IFIATGSCM.

Theorem 3.21Let f: X
— Y be a mapping where Y is an IFInT, ;, space.If f is an IFIATG

SCM, then f(sint(B)) € cl(ont (cl(f(B)))for every IFIROS B in X.

Proof:This theorem can be easily proved by taking complement in theorem 3.19.

Theorem 3.22 Let f: X
— Y be an IFIAnGSOM,where Y is an IFInT,,, space.Then for each

IFIP c(a,B)in Y and each IFIROS B in X such that f‘l(c(a, ,8))
€ B,cl (f(cl(B))) is an

IFISN of c(a,B)inY .

Proof: Let c(a,B) € Yand let B be an IFIROS in X such that f‘l(c(a, B))
€ B.That is c(a, B)

€ f(B).By hypothesis, f(B)is an IFInGSOS inY.Since Y is an IFInT, ;, space, f (B)is an IFIS

0S inY.Now c(a,B) € f(B) < f(cl(B))
cScl (f(cl(B))).Hence cl (f(cl(B))) is an IFISN

of c(a,B)inY.

Remark 3.23 If an IFIS A in an IFITS (X,7)is an IFInGSCS in X, then mwgscl(A) = A. But
the converse may not be true in general , since the intersection does not exist in IFItGSCSs.
Remarek 3.24 If an IFIS A in an IFITS (X, t)is an IFItGSOS in X, then mgsint(A) = A. But
the converse may not be true in general, since the union foes not exist in IFInGSOSs.

Theorem 3.25 Let f: X
— Y be a mapping.If f is an IFIATGSCM, then T[gscl(f(A)) c

f(cl(A))forevery IFISOS Ain X.
Proof : Let A be an IFISOS in X.Then cl(A)is an IFIRCS in X. By hypothesis f(cl(A))is an

IFIRGSCS inY.Then mgscl(f(cl(A)) = f(cl(A)). Now rgscl(f(A))
C mgscl (f(cl(A))) =

f(cl(A)). That is ﬂgscl(f(A)) c f(cl(A)).

Corollary 3.26 Let f: X
— Y be a mapping.If f is an IFIAnGSCM, then T[gscl(f(A)) c

f(cl(A))for every IFIGSOS A in X.
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Proof : Since every IFISOS is an IFISOS is an IFIGSOS, the proof is obvious from the

Theorem 3.25.
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